	Report No: Issue No:	R1737 2		4 M
(dB)	Test No:	T0976	Test Report	Page: 1 of 29

4 4.

EMC Testing

EMC Training

23, Headington Drive,
Cambridge.
CB1 9HE
Tel : 01954 251974 (test site)
or : 01223 241140 (accounts)
Fax : 01954 251907
web : www.dbtechnology.co.uk
email: mail@dbtechnologv.co.uk

REPORT ON ELECTROMAGNETIC COMPATIBILITY TESTS

Performed at: **TWENTY PENCE TEST SITE**

> **Twenty Pence Road**, Cottenham, Cambridge U.K. **CB4 8PS**

> > on

Williams Refrigeration

L5UC + Envirostart

dated

21st July 2003

	Report No: Issue No:	R1737 2					
(dB)	Test No:	T0976		Test Re	port	Page:	2 of 29
Equi	pment Unde	er Test (EU1):	Lŧ	5UC + Envirostart		
Test	Commissio	ned by:		Na Br Ki Na	illiams Refrigeratio orth Lynn Industrial ryggen Road ng's Lynn orfolk E30 2HZ		
Rep	esentative:			St	eve Inns		
Test	Started:			10)th July 2003		
Test	Completed	:		11	th July 2003		
Test	Engineer:			Rie	chard Martin		
Date	e of Report:			21	Ist July 2003		
Rep	ort:						
Writ	ten by: _	Rich	ard Martin	. Cł	necked by:	Derek Barlow	
Sign	ature: _			. Si	gnature:		
Date		23rd	July 2003	. Da	ate:	23rd July 200	3

dB Technology can only report on the specific unit(s) tested at its site. The responsibility of extrapolating this data to a product line lies solely with the manufacturer.

Test Standards Applied

EN61000-6-3:2001	Electromagnetic compatibility - Part 6-3: Generic standards - Emission standard for residential, commercial and light-industrial environments	FAIL #1
EN61000-6-1:2001	Electromagnetic compatibility (EMC) Part 6-1: Generic standards - Immunity for residential, commercial and light-industrial environments	See Results

#1 Original unit, no modifications, default mode.Only within limits when 0.47uF cap added AND unit operated in level 4 set-up (reference photo 2).

T	Report No: Issue No:	R1737 2		
(dB)	Test No:	T0976	Test Report	Page: 3 of 29

Emissions Test Results Summary

EN61000-6-3:20	001				FAIL
Test	Port	Method	Limit	PASS/FAIL	Notes
Conducted Emissions	ac power	CISPR 22	EN61000-6-3 = CISPR22(B)	FAIL	#1
Conducted Emissions	signal dc power	CISPR 22	EN61000-6-3 =CISPR22(B)	N/A	#2
Discontinuous Conducted Emissions	ac power	CISPR 14	EN61000-6-3	PASS	
Harmonic Currents	ac power	EN61000-3-2	EN61000-3-2	PASS	
Flicker	ac power	EN61000-3-3	EN61000-3-3	PASS	
Radiated Emissions		CISPR 22	EN61000-6-3 = CISPR22(B)	PASS	

#1 Original unit, no modifications, default mode.

Only within limits when 0.47uF cap added AND unit operated in level 4 set-up (reference photo 2). #2 Test not applicable because EUT has no relevant signal or dc power ports.

Report No: Issue No:	R1737 2		
Test No:	T0976	Test Report	Page: 4 of 29

Immunity Test Results Summary

Test	Port	Method	Severity		riterion	Notes
			in the second second	(Rec'd)		Summer of
Radiated Field Immunity		IEC 61000-4-3	3V/m 80-1000MHz 80%1kHz am mod	(A)	A	
Conducted RF Immunity	power signal/control functional earth	IEC 61000-4-6	3Vrms 0.15-80MHz 80%1kHz am mod	(A)	A	
Electrical Fast Transients	a.c. power	IEC 61000-4-4	1kV	(B)	A	
	d.c. power signal functional earth	IEC 61000-4-4	0.5kV	(B)	N/A	#1
Electrostatic Discharge		IEC 61000-4-2	8kV air	(B)	A	
		IEC 61000-4-2	4kV contact	(B)	A	
Surge	ac power	IEC 61000-4-5	1.0kV Line - Line 2.0kV Line - Earth	(B)	D	
	dc power	IEC 61000-4-5	0.5kV Line - Line 0.5kV Line - Earth	(B)	N/A	#1
Voltage Dips and Interruptions	ac power	IEC 61000-4-11	30% reduction 10msec	(B)	A	
пистирнопэ		IEC 61000-4-11	60% reduction 100msec	(C)	С	
		IEC 61000-4-11	>95% reduction 5 seconds	(C)	С	
Power Frequency Magnetic Field		IEC 61000-4-8	50Hz/60Hz 3A/m	(A)	N/A	#2

#1 Test not applicable because EUT did not have any dc ports, functional earth or signal ports.
#2 Test not applicable because EUT did not contain any devices likely to be susceptible to a magnetic field.

Performance Criterion

(Rec'd) = Minimum performance criterion recommended by standards Ach'd = Performance criterion achieved during actual test

Report No: Issue No:	R1737 2			
Test No:	T0976	Test Report	Page:	5 of 29

Contents

EUT Details	6
Details of Interconnecting Cables	6
Figure 1 General Arrangement of EUT and Peripherals	7
Photograph 1 General Arrangement of EUT and Peripherals	
Photograph 2 Switch Settings for Conducted and Harmonic Tests	8
est Equipment	9
est Methods	9
Harmonic Current Emissions	
Voltage Flicker	10
Radiated Emissions	11
RF Fields Immunity	11
Conducted RF Immunity	11
Electrical Fast Transient Immunity	12
Electrostatic Discharge Immunity	12
) Surge Immunity	12
Voltage Dips and Interruptions	12
Test Results	12
Discontinuous Conducted Emission Results	14
Harmonic Currents Results	15
Voltage Flicker Results	16
Radiated Emissions Results	17
Conducted RF Immunity Results	
Electrical Fast Transient Immunity Results	20
Electrostatic Discharge Immunity Results	21
) Surge Immunity Results	22
Voltage Dips Immunity Results	23
PLOT 1 Conducted Emissions : Default Setup - 230V Live (no mods)	
PLOT 2 Conducted Emissions : Default Setup - 230V Live (mods applied)	25
PLOT 3 Conducted Emissions : Level 4 Setup - 230V Live Line (mods applied)	26
PLOT 4 Conducted Emissions : Level 4 Setup - 230V Neutral Line (mods applied)	27
PLOT 5 Radiated Emissions : 25 MHz to 275 MHz	28
PLOT 6 Radiated Emissions : 250 MHz to 1 GHz	29
	General Details of Interconnecting Cables Modifications to EUT and Peripherals EUT Operating Modes EUT Performance Criteria <i>Figure 1 General Arrangement of EUT and Peripherals</i> Photograph 1 General Arrangement of EUT and Peripherals Photograph 2 Switch Settings for Conducted and Harmonic Tests est Equipment est Methods Conducted Emissions - ac power Discontinuous Conducted Emissions - ac power Harmonic Current Emissions Voltage Flicker Radiated Emissions Ref Fields Immunity Conducted RF Immunity Electrical Fast Transient Immunity Voltage Dips and Interruptions 'est Results Conducted Emission Results Discontinuous Conducted Emission Results Voltage Dips and Interruptions 'est Results Conducted Emission Results Voltage Flicker Results Picotral East Transient Immuni

	Report No: Issue No:	R1737 2			
dB	Test No:	T0976	Test Report	Page:	6 of 29

1 EUT Details

1.1 General

The EUT was an L5UC stainless steel freezer with electronic thermostat. The freezer was fitted with a Envirostart energy saving device.

Details of the EUT and associated peripherals used during the tests are listed below. Figure 1 shows the interconnections between the EUT and peripherals.

Item	Manufacturer	Model	Description	Serial No:	Notes
1	Williams Refrigeration	L5UC SS	Freezer	306/353018	
2	Williams Refrigeration	LAE WUBC	Thermostat		
3	EMS European Ltd.	240-SPMEC-10	Energy Saving Unity	2974-1-962-102	

1.2 Details of Interconnecting Cables

There were no external interconnecting cables except for the three cored mains cable.

1.3 Modifications to EUT and Peripherals

Details of any modifications that were required to achieve compliance are listed below. The modification numbers are referred to in the results sections as appropriate.

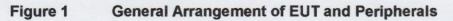
Mod No:	Details	Implemented for
	470n X2 cap. added from Live Line to Neutral Line. Envirostart changed from Default setting to Level 4. (See Photograph 2)	Conducted Emissions

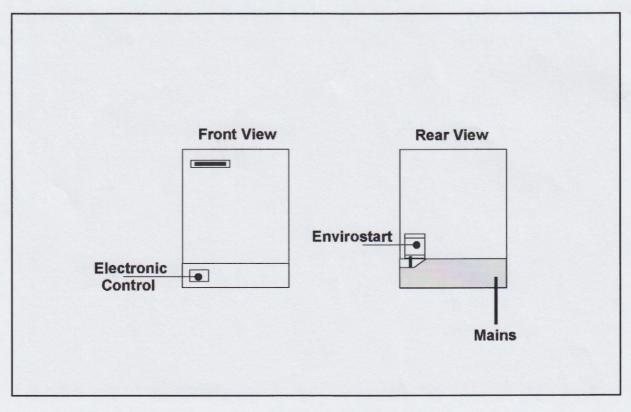
1.4 EUT Operating Modes

The EUT was tested in the following operating mode or modes. Generally, operating modes are chosen that will exercise the functions of the EUT as fully as possible and in a manner likely to produce maximum emission levels or susceptibility. Individual test result sheets reference the operating mode of the EUT.

Operating Mode	Details
1	Freezer operating on a cyclic mode, utilising the Envirostart when compressor is running.

	Report No: Issue No:	R1737 2			
dB	Test No:	T0976	Test Report	Page:	7 of 29

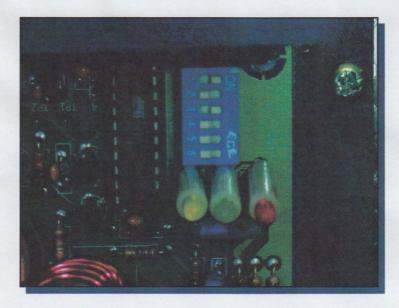

1.5 EUT Performance Criteria


To assess the immunity performance of the EUT the performance criteria listed below were applied. The criteria specify the functions that were monitored during the tests and the levels of performance that were considered acceptable.

Criterion	Details						
Α	Unit works as specification and temperature control is within 1deg. C.						
В	Unit works as specification and temperature control is within 1deg. C						
С	Unit stops working properly for duration of test but recovers automatically after interference source is removed.						
D	EUT stops working due to electronic or mechanical failure caused by the test.						

Performance Criterion A is normally applied to tests where the phenomenon is likely to be continuous in nature - the EUT should continue to perform within the specified performance limits during the test. Performance Criterion B is normally applied to tests where the phenomenon is likely to be transient in nature - in this case temporary loss of performance is usually acceptable during the test as long as the EUT automatically returns to normal operation after the test.

Performance Criterion C is normally associated with power supply failures - in this case loss of performance is usually acceptable as long as the EUT can recover with the aid of user intervention if necessary.



	Report No: Issue No:	R1737 2		
dB	Test No:	T0976	Test Report	Page: 8 of 29

Photograph 1 General Arrangement of EUT and Peripherals

Photograph 2 Switch Settings for Conducted and Harmonic Tests

A	Report No: Issue No:	R1737 2		
	Test No:	T0976	Test Report	Page: 9 of 29

2 Test Equipment

The test equipment used during the tests was one or more of the items listed below. Individual test result sheets indicate which items were used.

Ref No:	Manufacturer	Model	Description	Serial Number
R1	Chase	LHR7000	RF Receiver (10kHz-30MHz)	1056
R5 R5A R5B	Hewlett Packard Hewlett Packard Hewlett Packard	HP 8595E HP11947A HP87405A	Spectrum Analyser Transient Limiter Pre-amp	3412A00701 3107A01209 3207A00322
L1	EMCO	3825/2	LISN	1358
A5	Chase	CBL111A	Bilog Antenna (30MHz-1GHz)	1760
SG1	Marconi	2022D	RF Signal Generator	119216/050
AMP1	Kalmus	737LC	Power Amplifier	072694-4
FP1A FP1B	Holaday Holaday	4422 4416	Field Strength Meter Repeater for FSM	89360 84553
WG4	EM TEST	UCS 500-M	EFT, ESD, DIPS, Surge	1299-36
CDN1	dB Technology	dB-CDN-M3	3w mains CDN	001
HA1	Thurlby Thandar	HA16000	Harmonics Analyser	125509
HA1a	Thurlby Thandar	AC1000	Low Distortion Supply	116745a
SG4	Marconi	2022D	RF Signal Generator	119176/008
SG5	Blackstar	LD100	Audio Signal Generator	61300
AMP2	Kalmus	737LC	Power Amplifier	7355C1
OS2	Tektronix	TDS3052	Oscilloscope	B013325

3 Test Methods

3.1 Conducted Emissions - ac power

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

Bench top EUTs and peripheral equipment are normally placed on a 0.8m high non-conducting bench, positioned 0.4m from one of the metallic walls of a screened room. Floor standing EUTs are normally placed 0.1m above the metallic floor of the screened room. Mains leads are bundled so as not to exceed 1m.

The EUT is powered using a 50ohm/50uH Line Impedance Stabilisation Network (LISN). Peripherals are powered using a second a 50ohm/50uH LISN. These LISNs are bonded to the screened room floor.

With the correct supply voltage applied to the EUT scans are performed on both the live and neutral line outputs of the LISN using quasi-peak detection over the specified frequency range. The results of these scans are shown in the plots section at the end of the report.

Significant emissions identified by the scans are measured and the results tabulated. The table of results is shown in the conducted emissions results section.

Report No: Issue No:	R1737 2			
Test No:	T0976	Test Report	Page:	10 of 29

3.2 Discontinuous Conducted Emissions - ac power

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

Bench top EUTs and peripheral equipment are normally placed on a 0.8m high non-conducting bench, positioned 0.4m from one of the metallic walls of a screened room. Floor standing EUTs are normally placed 0.1m above the metallic floor of the screened room. Mains leads are bundled so as not to exceed 1m.

The EUT is powered using a 50ohm/50uH Line Impedance Stabilisation Network (LISN). Peripherals are powered using a second a 50ohm/50uH LISN. These LISNs are bonded to the screened room floor.

With the correct supply voltage applied to the EUT measurements are made at the spot frequencies specified by the test standard. Measurements are made over a sufficient time period to allow the necessary number of transient emissions ('clicks') to be recorded.

The measurements are tabulated in the discontinuous conducted emissions results section.

3.3 Harmonic Current Emissions

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

The EUT was powered from a supply with low harmonic content (meeting the requirements of Annex A.2 of EN61000-3-2).

Harmonic currents imposed on the mains supply by the EUT were measured using a Harmonics Measurement Set. Where necessary the operating mode of the EUT was changed to find the condition that produced highest levels of harmonics.

A table of results is shown in the results section.

3.4 Voltage Flicker

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

The EUT is powered via a voltage flicker meter which analyses changes in mains voltage across the EUT caused by voltage drops across a reference impedance due to changes in EUT load current.

The flicker meter is used to assess short term and long term flicker in accordance with EN 61000-3-3.

Maximum relative voltage change is assessed using an oscilloscope connected to the current monitor output of the flicker meter. The voltage drop that would occur across the EN61000-3-3 reference impedance is calculated from the current measurements.

The measurements obtained are shown in the results section.

A	Report No: Issue No:	R1737 2			
dB	Test No:	T0976	Test Report	Page:	11 of 29

3.5 Radiated Emissions

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

Initial scans are performed in a semi-anechoic screened room at a distance of 3m. Scans are performed over the frequency range specified in the test standard with the antenna both horizontally and vertically polarised. During these scans the EUT and peripherals are rotated through 360°. Bench top EUTs are placed on a non-conducting bench at a height of 0.8m above the ground plane. Floor standing EUTs are placed 0.1m above the ground plane. The results of the scans are shown in the plots included at the end of the report.

Significant emissions identified by the scans are measured on an open area test site at the appropriate test distance using a CISPR16 quasi-peak receiver. Maximised readings are obtained by rotating the EUT through 360° and adjusting the height of the antenna from 1m to 4m. Measurements are made with the antenna both horizontally and vertically polarised and the results tabulated.

3.6 RF Fields Immunity

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

Bench top EUT is placed on a non-conducting wooden bench at a height of 0.8m above the floor of an anechoic screened room. Floor standing EUT is placed 0.1m from the floor of the screened room. The transmitting aerial is placed at the relevant calibration distance from the EUT and driven by means of a power amplifier and signal generator. An isotropic field strength meter is placed on the bench adjacent to the EUT to monitor the local field strength.

The signal generator frequency is swept over the appropriate frequency range whilst the amplitude of the signal is controlled either:

using the real-time field strength meter reading;

using a profile previously determined in a calibration run without the EUT in place.

3.7 Conducted RF Immunity

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

The EUT and peripheral equipment are placed at a height of 0.1m above a ground plane.

AC input ports and other suitable ports are connected to CDNs (coupling decoupling networks).

An interference signal is derived from a signal generator and fed through a power amplifier and attenuator. The signal is applied in turn to each port tested via the CDN, an EM clamp or directly onto cable screens via 150R - the results table indicates the method of application.

The signal is swept through the appropriate frequency range and the output level adjusted to a level determined by the characteristics of the coupling device and the test level specified in the standard. The level of the applied signal was monitored using the forward power meter on the RF amplifier.

Report No: Issue No:	R1737 2		
Test No:	T0976	Test Report	Page: 12 of 29

3.8 Electrical Fast Transient Immunity

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

Bench top EUT is placed on a non-conducting wooden bench at a height of 0.8m above a ground plane. Floor standing EUT is placed 0.1m above the ground plane. The EFT generator is bonded to the ground plane.

Electrical Fast Transients are applied to the power leads of the EUT via a coupling network. Electrical Fast Transients are also applied to signal and control leads exceeding 3m in length using a capacitive coupling clamp. Where required, the leads are extended to facilitate this.

3.9 Electrostatic Discharge Immunity

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

Bench top EUT is placed on thin insulating sheets positioned on a horizontal metal coupling plane. The coupling plane is 0.8m above a metallic ground plane and connected to it by discharge resistors with a total value of 1Mohm. Floor standing EUT is placed on, but insulated from, the ground plane / screened room floor. The ESD generator and the return cable of the discharge gun are both bonded to the ground plane.

For conductive areas of the EUT, contact discharge is made to the relevant accessible points. Where areas of the EUT are insulated and contact discharge cannot be performed, air discharge is performed. Contact discharge is also made to the horizontal coupling plane and to a vertical coupling plane at the side of the EUT.

For each location selected, ten discharges are performed at the appropriate levels and polarities.

3.10 Surge Immunity

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

Surges are generated using a CWG (combination wave generator) and applied via an appropriate coupling network to the mains lead of the EUT. Surges are applied at the specified levels, polarities and mains phase angle.

For some equipment surges are also applied via an appropriate coupling network to certain signal leads.

3.11 Voltage Dips and Interruptions

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

The mains lead of the EUT was connected to a variable power source. The output of the power source is varied to simulate the specified voltage dips and interruptions.

4 Test Results

The following sections contain tabulated test results. Plots of various scans are included at the back of this section.

A	Report No: Issue No:	R1737 2		
	Test No:	T0976	Test Report	Page: 13 of 29

4.1 Conducted Emission Results

Test	Equip	ment:	Fact	or Set 1	:	EMLI	SN 1	ODB_P#	ND	RG2	14	10 m ca	ble
	npany: e: s: s: s:		ims Re luly 200	efrigera 03		ı g limits	of	Tes	^{duct:} L5U t Eng: Richa 61000-6-3		ostart SPR22(B)		
Test	Ор		.ine Fact L/N) Set	Freq. MHz	Det qp/ av	Rec. Level dBuV	Corr'n Factor dB	Total Level dBuV	Limit CISPR22(B) dBuV	Margin CISPR22(B) dB	Limit	Margin	Notes
	Resul	lts				Minimu PASS/F		jin	FAIL				
No	tes						Comm	ents ar	nd Observat	tions			
			The wor	st emis	sions		f the El	JT wa	s found to b	e when it fi d to rise dur			

A	Report No: Issue No:	R1737 2			
	Test No:	T0976	Test Report	Page:	14 of 29

4.2 Discontinuous Conducted Emission Results

Com	pany: V	Villian	ns Ref	riger	ation	Product:	L5UC	+ Envirosta	rt		
Date	: 1	Oth Ju				Test Eng:	Richard	Martin			
Ports	-	c power									
Test		SISPR 1			using limits of	EN6100					
		elaxati quipme		44 L1,R1	dB	Base	d on a	click rate of :	0.083	per m	ninute
	Test	quipme	ant.	LI,KI							
			-								
Test	Oper. Mode	Mod State	Freq. (MHz)	Line		Click Levels (dBuv)	S		Click Limit	No: above	RESULT
	mous	0.010	((0000)					
	1	1									#1
No	ites			2423	Comments and Ob	servations					
#	¥1			ly the	were taken as Observ length was 0.5 to 5 r pth.						d

	Report No: Issue No:	R1737 2		
(dB)	Test No:	T0976	Test Report	Page: 15 of 29

4.3 Harmonic Currents Results

Compa	any: Willian	ns Refrigera	ation	Product:	L5UC + Envi	rostart	
Date:	10th Ju				Richard Martin		
Ports:	ac power						
Test: Ports:	EN6100	0-3-2	using limits of	EN61000	-3-2		
Test:							
oad i	Power:	402.6	to 571.2 W	640.5	VA Power F	actor:	0.823
	Load Curr		190 to 2.855				
	Limits:		ration under ad declared C		k: 61.3%		THD: 11.2%
	LIMICS.		andard Limits				
1	Harmonic	Limit	Min value	Max value	Max value		Assessment
	Number	Current				Limit	
		mA	mA	mA	mA		
	Fundament		2162.7	2887.1	2826.6	10 4	Dese
	2:	1080.0	143.6	268.1	235.3	19.4 5.5	
	3: 4:	2300.0 430.0	66.5 0.3	181.0 42.2	150.5 42.2	5.0	Pass Pass
	4: 5:	430.0	9.7	186.1	186.1	2.5	Pass
	6:	300.0	0.0	18.8	7.7	2.0	Pass
	7:	770.0	9.5	130.7	130.7	2.4	Pass
	8:	230.0	3.5	25.5	25.5	4.5	Pass
	9:	400.0	0.1	20.5	20.5	1.7	Pass
	10:	184.0	0.0	13.1	9.8	3.6	Pass
	11:	330.0	0.0	27.8	27.8	1.2	Pass
	12:	153.3	0.0	14.2	14.2	2.7	Pass
	13:	210.0	0.0	27.3	27.3	1.1	Pass
	14:	131.4	0.1	7.1	6.1	2.3	Pass
	15:	150.0	0.0	8.6	8.6	1.4	Pass
	16:	115.0	0.0	8.9	8.9	2.2	Pass
	17:	132.3	0.0	8.8	8.6	1.2	Pass
	18:	102.2	0.0	6.1	6.1	1.4	Pass
	19:	118.4	0.0	6.2	5.0	1.1	Pass
	20:	92.0	0.0	6.1	6.1	1.3	Pass
	21: 22:	107.1 83.6	0.0	5.3 5.5	5.3 5.5	1.0	Pass Pass
	22:	97.8	0.0	4.6	4.6	1.0	Pass
	24:	76.7	0.0	5.7	5.7	2.1	Pass
	25:	90.0	0.0	4.8	4.8	1.3	Pass
	26:	70.8	0.0	4.6	4.6	2.0	Pass
	27:	83.3		4.1	4.1	1.6	
	28:	65.7	0.0	4.6	4.6	2.0	Pass
	29:	77.6	0.0	4.4	4.4	1.1	Pass
	30:	61.3	0.0	3.9	3.9	2.6	Pass
	31:	72.6	0.0	3.7	3.7	1.2	Pass
	32:	57.5	0.0	3.7	3.7	1.2	Pass
	33:	68.2	0.0	2.8	2.8	1.0	Pass
	34:	54.1	0.0	3.5	3.5	1.3	Pass
	35:	64.3	0.0	3.9	3.9	1.0	Pass
	36:	51.1	0.0	3.2	3.2	***	Pass
	37:	60.8	0.0	2.6	2.6	0.9	Pass
	38:	48.4	0.0	3.2	3.2	1.0	Pass
	39:	57.7	0.0	3.0	3.0	0.9	Pass
	40:	46.0	0.0	2.8	2.8	1.0	Pass

	Report No: Issue No:	R1737 2		
dB	Test No:	T0976	Test Report	Page: 16 of 29

4.4 Voltage Flicker Results

company	Williams Refrigeration	Product: L5UC + Envirostart
Date:	10th July 2003	Test Eng: Dave Smith
Ports:	ac power	J Dave entan
Test:	EN61000-3-3 using limits of	EN61000-3-3
Ports:		
Test:		
	230V ac	0.4R +j0.25
Notes	Cr	omments and Observations
-		or of switch-ons of the compressor per hour is 10.

A	Report No: Issue No:	R1737 2		
(dB)	Test No:	T0976	Test Report	Page: 17 of 29

4.5 Radiated Emissions Results

Date: Ports:				s Ref 200	frigerat 3	tion			Proo Test	L5U Eng: Richa	C + Envir ard Martin	ostart		
Test: Ports: Test:		CISP	R 22	2	1	using	limits	of	ENG	1000-6-3	=CIS	SPR22(B)		
est C	Op N ode St	Aod C tate	1 A A A	Fact Set	Freq. MHz	Ant Pol		Factor	Total Level dBuV/m	and the second	Margin CISPR22(B) dB	Limit	Margin	Note
1	1	0												#1
Re	esults						PASS/			PASS	ions			

-	Report No: Issue No:	R1737 2		
	Test No:	T0976	Test Report	Page: 18 of 29

4.6 **RF Field Immunity Results**

RF Immunity

		E CALE AND AND A	03		7					DEC	III T
	Equip	ment:	S	G1,AMP	1,FP1			St			ULT
Ports:			-						Recm'd C		Crit.
Test Ports:		EC 61000-4	-3 3	v/m 80-	1000MHz 8	0%1KH	z am me		(A) Recm'd C		A Crit.
Test:									kecm a C	пс Асп (i Cni.
Ports:						-			Recm'd C	rit Ach'o	Crit.
Test:											
Oper.	Mod	EUT	Profile	Ant-	Frequency	Step	Dwell	Polaris	Field	Modulation	Note
Mode	State	orientation		enna	Range	Size		ation	Strength	%AM / freq	
					MHz	%	msec		V/m		
1	1	Front	3vlf	A5	80-200	0.15	450	v	3	80%, 1kH	z #1
1	1	Front	3hlf	A5	80-200	0.15	450	H	3	80%, 1kH	
1	1	Front	6vhf	A5	200-1000	0.15	450	V	3	80%, 1kH	z #1
1	1	Front	6hhf	A5	200-1000	0.15	450	н	3	80%, 1kH	z #1
1	1	Front	6vhf	A5	900	N/A	N/A	v	3	200Hz, puls	
1	1	Front	6hhf	A5	900	N/A	N/A	н	3	200Hz, puls	e #2
1	1	Side	3vlf	A5	80-200	0.15	450	V	3	80%, 1kH	z #1
1	1	Side	3hlf	A5	80-200	0.15	450	H	3	80%, 1kH	
1	1	Side	6vhf	A5	200-1000	0.15	450	V	3	80%, 1kH	
1	1	Side	6hhf	A5	200-1000	0.15	450	H	3	80%, 1kH	z #1
1	1	Side	6vhf	A5	900	N/A	N/A	V	3	200Hz, puls	e #2
1	1	Side	6hhf	A5	900	N/A	N/A	Н	3	200Hz, puls	e #2

V = Vertical, H = Horizontal polarisation #1, 2, 3.... see Observations Table below

lotes	Comments and Observations						
#1	No effect observed.						
#2	For information only. No effect observed.						
	Stored profile method used.						

Report No: Issue No:	R1737 2		
Test No:	T0976	Test Report	Page: 19 of 29

4.7 Conducted RF Immunity Results

Date		Villiam 1th July	s Refrigera	tion		roduct: L5U		nvirostart in		
Test	Equip			SG1, AM					RES	ULT
Ports	e p	ower EC 6100		signal/con		o%1kHz am	mod	Recm'd Crit (A)	Ach'd	
Ports Test								Recm'd Crit	Ach'd	Crit.
Ports Test.	<i>.</i> :							Recm'd Crit	Ach'o	I Crit.
Test	Oper. Mode	Mod State	Cable		Coupler	Frequency Range MHz	Step Size %	Modulation %AM / freq	Level Vrms	Note
1	1	1	Main	S	3 wire CDN	0.15 - 80	0.15	80% 1kHz	3	#1

lotes		Comments and Observations	
#1	No effects.		

	Report No: Issue No:	R1737 2			
(dB)	Test No:	T0976	Test Report	Page:	20 of 29

4.8 Electrical Fast Transient Immunity Results

FT	anv.			Produ				
Date:			efrigeration		LOUC	+ Enviro	start	
		h July 20		1050 0	ing: Richar	awarun		RESULT
Test Ports:	Equipme	nt: power	WG4			Port	m'd Crit	Ach'd Crit.
Test		61000-4	-4 1kV				(B)	A
Ports:		power	signal	function	onal earth			
Test:	IEC	61000-4	-4 0.5kV			Reci	(B) m'd Crit	N/A Ach'd Crit.
Test:								
Test	Oper. Mode	Mod State	Transients	Applied to:	Level kV	Polarity	Duration S	Notes
1	1	1	Mains	L	1	+	60	#1
2	1	1	n	N	1	+	60	#1
3	1	1	n	E	1	+	60	#1
4	1	1	п	L+N	1	+	60	#1
5	1	1	"	L+E N+E	1	+	60 60	#1
6 7	1	1	п	L+N+E		++++	60	#1
8	1	1	Mains	L	1	-	60	#1
9	1	1	n	N	1	-	60	#1
10	1	1	n	E	1	-	60	#1
11 12	1	1		L+N L+E	1	-	60 60	#1
13	1	1	п	N+E	1		60	#1
14	1	1	n	L+N+E	1	-	60	#1
<u>L = L</u>	ive, N	= Neutra	I, E = Earth	#1, 2, 3 see	e Observati	ions Table b	elow	
No	otes			Comments a	nd Observa	ations		
#	¥1	1	No effect.					

	Report No: Issue No:	R1737 2			
(dB)	Test No:	T0976	Test Report	Page:	21 of 29

4.9 Electrostatic Discharge Immunity Results

Compai	^{ny:} W	/illiam	s Refrigeration	Produc	^{ct:} L5	UC +	Envi	rostar	t		
Date:		1th July		Test E	ing: Ric	chard N	Nartin				
Test E	auipn	nent:	WG4							RESU	JLT
Ports:							Re	cm'd C	rit	Ach'd	Crit.
Test	IE	C 6100	00-4-2 8kV air					(B)		Α	
Ports: Test:		0 0100	A 2 Akl contact				Re	cm'd C (B)	rit	Ach'd A	Crit.
1051.	IE	C 6100	00-4-2 4kV contact				Re	cm'd C	rit	Ach'd	Crit.
Test:											
est 0	per.	Mod	Discharges Applied to:	+			1	+		+	1
	lode	State	Discharges Applied to.	4kV	4kV	+ 2kV	2kV	4kV	4kV	8kV	8k\
				cont	cont	air	air	air	air	air	ai
			L5UC Freezer								
1	1	1	Led Display			#1	#1	#1	#1	#1	#
	1	1	Outer panels and Edges								
-	1	1	Outer Screws	#1	#1						
	1	1	Inner Panels Inner Screws	#1 #1	#1 #1						
5	1		Inner Screws	#1	#1						
			Envirostart unit								
-	1	1	Case	#1	#1						
7	1	1	Screws	#1	#1						
		-									
1	1	1		1			1	1	1	1	1

#1, 2, 3.... see Observations Table below

Notes	Comments and Observations					
#1	No effect observed.					

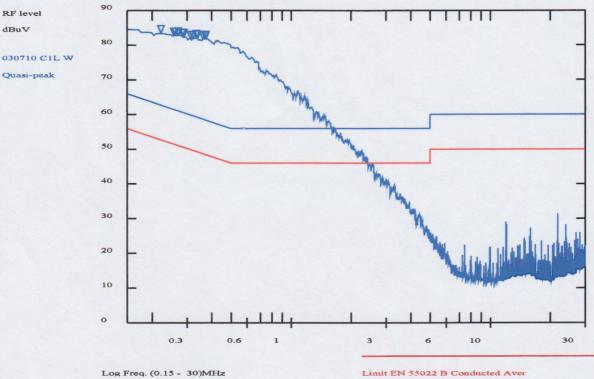
	Report No: Issue No:	R1737 2		
(dB)	Test No:	T0976	Test Report	Page: 22 of 29

4.10 Surge Immunity Results

Compa	^{ny:} Wil	liams Ref	frigeration		Product: L5UC + Envirostart					
Date:	11t	h July 200	3		Test E	ng: Richard	d Martin			
	quipme		WG	4					RESULT	
Ports:		ower			-		Recm'd	Crit	Ach'd Crit	
Test		61000-4-	5 1.0k	V Line - Line	2.0kV	Line - Ear		0.11	D	
Ports: Test:		ower		Viling Ling	O EL	line For	Recm'd th (B)	Cnt	Ach'd Crit. N/A	
Ports:	IEC	61000-4-	0.08	V Line - Line	0.5KV	Line - Ear	Recm'd	Crit	Ach'd Crit	
Test:							incom u	une		
Test	Oper.	Mod	Surges Ap	oplied to:	Level kV	Polarity	Phase	Interval secs	Notes	
1	1	1	Mains	L - N	0.5		0, 90, 270	20	#1	
2	1	1	Mains	L-E	0.5	+ +	0, 90, 270	20	#1	
3	1	1	Mains	N-E	0.5	+	0, 90, 270	20	#1	
4	1	1	Mains	L-N	0.5	-	0, 90, 270	20	#1	
5	1	1	Mains	L-E	0.5	-	0, 90, 270	20	#1	
6	1	1	Mains	N - E	0.5	-	0, 90, 270	20	#1	
7	1	1	Mains	L-N	1	+	0, 90, 270	20	#1	
8	1	1	Mains	L-E	1	+	0, 90, 270	20	#1	
9	1	1	Mains	N - E	1	+	0, 90, 270	20	#1	
10	1	1	Mains	L - N	1	-	0, 90, 270	20	#1	
11	1	1	Mains	L-E	1	-	0, 90, 270	20	#1	
12	1	1	Mains	N - E	1	-	0, 90, 270	20	#1	
13	1	1	Mains	L-E	2	+	0, 90, 270	30	#2	
14	1	1	Mains	N - E	2	+	0, 90, 270	30	#2	
15	1	1	Mains	L-E	2	-	0, 90, 270	30	#2	
16	1	1	Mains	N - E	2	-	0, 90, 270	30	#2	
		L = Li	ive, $N = Ne$	eutral, E = Ea	rth	#1, 2,	3 see Obser	vations 1	Table below	
Not	tes			Com	ments an	d Observa	tions			
#	1	No	effect.							
#:	2	Env	virostart unit	was seen to a	rc at eve	ery test be	fore failing.			

Report No: Issue No:	R1737 2			
Test No:	T0976	Test Report	Page:	23 of 29

4.11 Voltage Dips Immunity Results


Compa	^{ny:} Willi	ams Ref	rigeration			nvirostart	
Date:	10th	July 2003		Test Eng: Ric	hard Mart	in	
Test E	quipmen	t:	WG4				RESULT
Ports:	ac por	the state of the second st					Ach'd Crit.
Test	IEC 6	1000-4-1	1 30% reduction	10msec		(B)	Α
Ports:						Recm'd Crit	Ach'd Crit.
Test Ports:	IEC 6	1000-4-1	1 60% reduction	100msec		(C) Recm'd Crit	C Ach'd Crit.
Test	IFC 6	1000-4-1	1 >95% reduction	5 seconds		(C)	C Acti d Citt.
Ports: Test:						Recm'd Crit	Ach'd Crit.
Test	Oper. Mode	Mod State	Voltage Reduction	Period	Number Applied	"	Votes
1	1	1	30% reduction	10msec	5		#1
2	1	1	60% reduction	100msec	5		#1
3	1	1	>95% reduction	5 seconds	5		#2

Notes	Comments and Observations				
#1	No effect on either 0 or 180 deg.				
#2	Unit stopped but automatically restarted when power is restored to normal.				

	Report No: Issue No:	R1737 2		
(dB)	Test No:	T0976	Test Report	Page: 24 of 29

Notes

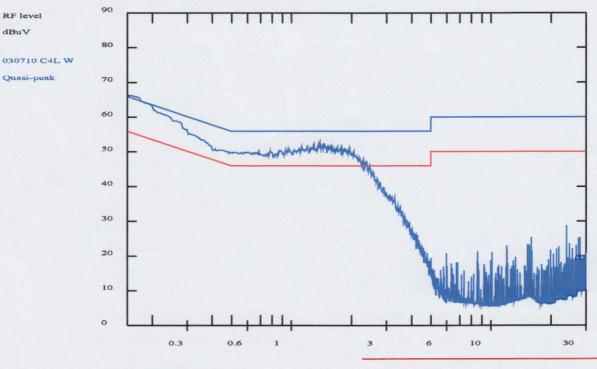
Analyse 030710 C1L Williams Refrig. L5UC + Enviro - 230V Test: EN55022(B),EN55011(B),EN55014&13 Main Cond(QP Det)

Limit EN 55022 B Conducted Aver

PLOT 1 Conducted Emissions : Default Setup - 230V Live (no mods)

Company:	Williams Re	figeration	Product:	L5UC + Envi	roStart	
Date:	10 Jul 03		Test Engineer:	Richard Mart	in	
Test:	EN55022		Limit:	EN(B) QP+	AV	
Notes: EnviroStart in	Default Setup.					
230V						
Line:	Live	Attenuator:	10dB PAD	Operating Mode:	1	
Detector:	QuasiPeak			Mod. State:	0	
LISN:	EMCO	Filename:	C3710600.plt			

Frequency List (MHz)


	-		

	Report No: Issue No:	R1737 2		
(dB)	Test No:	T0976	Test Report	Page: 25 of 29

Analyse 030710 C4L Williams Refrig. L5UC Enviro - 230V

Notes

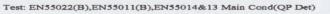
Test: EN55022(B),EN55011(B),EN55014&13 Main Cond(QP Det)

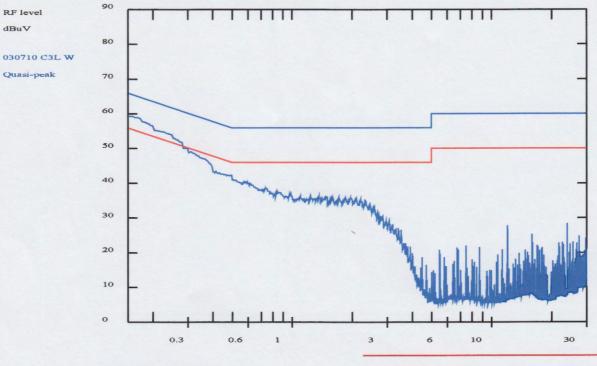
Log Freq. (0.15 - 30)MHz

Limit EN 55022 B Conducted Aver

PLOT 2 Conducted Emissions : Default Setup - 230V Live (mods applied)

Company:	Williams Re	frigeration	Product:	L5UC + Envi	roStart	
Date:	10 Jul 03		Test Enginee	r: Richard Marti	n	
Test:	EN55022		Limit:	EN (B) QP +	AV	
Notes:						
EnviroStart in	Default Setup.					
470n X2 cap a	added.					
230V						
Line:	Live	Attenuator:	10dB PAD	Operating Mode:	1	
Detector:	QuasiPeak			Mod. State:	1	
LISN:	EMCO	Filename:	C37106CC.plt			


Frequency List (MHz)


	Report No: Issue No:	R1737 2		
(dB)	Test No:	T0976	Test Report	Page: 26 of 29

.21

Analyse 030710 C3L Williams Refrig. L5UC + Enviro - 230V

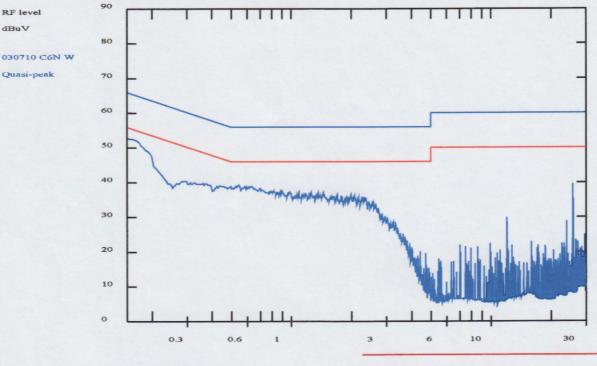
Notes

Log Freq. (0.15 - 30)MHz

Limit EN 55022 B Conducted Aver

PLOT 3 Conducted Emissions : Level 4 Setup - 230V Live Line (mods applied)

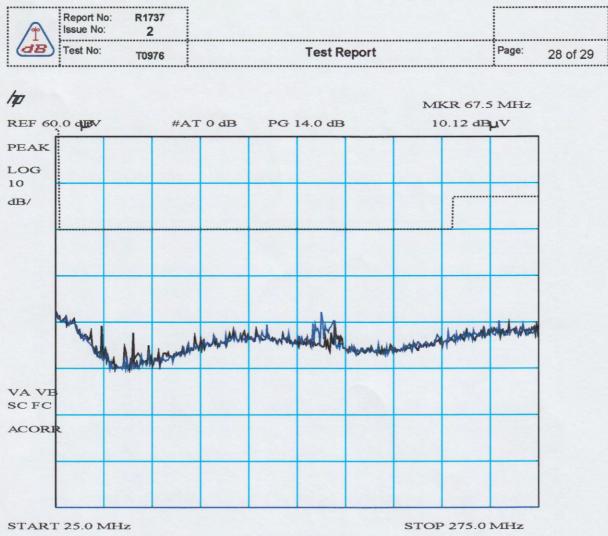
Company:	Williams Re	frigeration	Product:	L5UC + Envi	rostart	
Date:	10 Jul 03		Test Engineer	: Richard Marti	n	
Test:	EN55022		Limit:	EN(B)QP+	AV	
Notes:						
Envirostart in	Step 1 (Level 4) S	Setup.				
470n X2 capad	citor added.					
230V					1111 Carlos	
Line:	Live	Attenuator:	10dB PAD	Operating Mode:	1	
Detector:	QuasiPeak			Mod. State:	1	
LISN:	EMCO	Filename:	C37106A7.plt			


Frequency List (MHz)

	Report No: Issue No:	R1737 2		
(dB)	Test No:	T0976	Test Report	Page: 27 of 29

Analyse 030710 C6N Williams Refrig. L5UC + Enviro - 230V

Notes



Limit EN 55022 B Conducted Aver

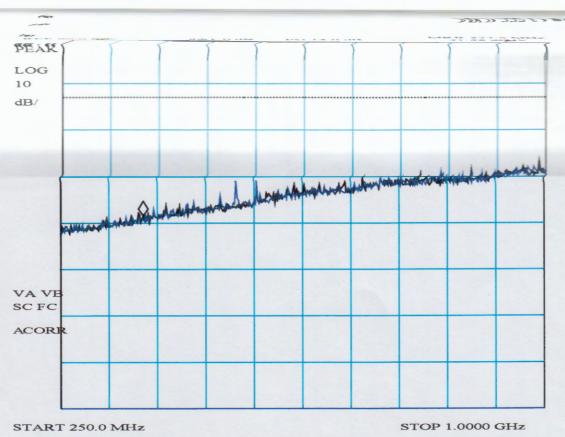
PLOT 4 Conducted Emissions : Level 4 Setup - 230V Neutral Line (mods applied)

Company:	Williams Re	frigeration	Product:	L5UC + Envirostart
Date:	10 Jul 03		Test Engineer	r: Richard Martin
Test:	EN55022		Limit:	EN (B) QP + AV
Notes:				
Envirostart in	Step 1 (Level 4) S	Setup		
470n X2 capad	citor added.			
Cycling.				
230V				
Line:	Neutral	Attenuator:	10dB PAD	Operating Mode: 1
Detector:	QuasiPeak			Mod. State: 1
LISN:	EMCO	Filename:	C3710746.plt	

Frequency List (MHz)

#RES BW 120 kHz

VBW 300 kHz


SWP 52.1 msec

PLOT 5 Radiated Emissions : 25 MHz to 275 MHz

Company:	Williams F	Refrigeration	Product:	L5UC + Envi	ostart	
Date:	10 Jul 03		Test Engineer	Richard Marti	n	
Test:	EN55022		Limit:	EN (B)		
Notes:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Envirostart uni	it set to default s	ettings.				
Black=Vert. B	lue=Horiz.					
Polarisation:	V + H	Orientation:	0 - 360°	Operating Mode:	1	
Distance:	3m	Antenna:	Bilog	Mod. State:	0	
Height:	1m	Filename:	H37104C5.plt			

Frequency List (MHz)

,		***************************************	 *************************	

#RES BW 120 kHz

VBW 300 kHz

SWP 156 msec

PLOT 6 Radiated Emissions : 250 MHz to 1 GHz

Company:	Williams R	Refrigeration	Product:	L5UC + Envi	rostart			
Date:	10 Jul 03		Test Enginee	er: Richard Mart	in			
Test:	EN55022		Limit:	EN (B)				
Notes:	*****							
Envirostart unit set to default settings.								
Black=Vert. Blue=Horiz.								
Polarisation:	V + H	Orientation:	0 - 360°	Operating Mode:	1			
Distance:	3m	Antenna:	Bilog	Mod. State:	0			
Height:	1m	Filename:	H37104CF.plt					

Frequency List (MHz)
